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Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the
metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field pro-
duced by this induced current degrades the spatial and temporal performance of the primary field gen-
erated by the gradient coils. Although this undesired effect can be minimized by using actively and/or
passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still
remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the suc-
cessful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy cur-
rents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides
thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current den-
sity on each as a Fourier series. The coupling between each mode of the Fourier series with every other is
modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat
surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a
canonical problem and comparing the results against a commercially available software package. An
accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced
by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat con-
sisting of three different conducting materials. Details of the temporal–spatial induced current diffusion
process were simulated through all cryostat layers, which could not be efficiently simulated with any
other method. With this data, all quantities that depend on the current density, such as the secondary
magnetic field, are simply evaluated.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

According to Faraday’s law, voltage is induced in a conducting
object when it is under the influence of a time-varying magnetic
field. If a closed conducting path exists, then time-varying current
flows in the conducting object; these are commonly referred as
eddy currents. Eddy currents, like a current flowing in a wire, pro-
duce Ohmic heating, Lorentz forces (when immersed in an external
magnetic field) and time-varying magnetic fields. Superconducting
magnets for magnetic resonance imaging (MRI) scanners are usu-
ally contained in a multi-cylindrical conducting cryostat structure.
The cryostat contains cryogens (e.g. liquid Helium) that maintain
the superconducting properties of the magnet wires whilst also
providing enough support to counteract the large magnetic forces
and mechanical stresses. Magnetic field gradient coils are rapidly
switched to encode the precessional frequency of the nuclear spin
with spatial position by a linear variation of the axial magnetic
ll rights reserved.
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field component along the x, y and z coordinates. As the gradient
coils are switched, they invariably induce complex spatial and
time-varying eddy currents within the conducting structure of
the MRI scanner. These eddy currents in turn, generate a time-
dependent magnetic field in the region of interest (ROI). This unde-
sired secondary magnetic field opposes and distorts the linear pri-
mary gradient field generated by the gradient coils. This results
in a miss-location of the NMR signal and consequential image dis-
tortion [1–3]. Aluminum cylinders cooled to 4K usually form part
of the magnet support and cryostat. Hence, when gradient coils
are switched, long-lasting eddy currents are induced in these
structures [4–7] since their conductivity is high. The secondary
fields can build up over time if the repetition time of gradient
pulses is shorter than the longest eddy current decay constant. This
undesired effect produces thermal load in the cryostat vessel
which may lead to increased boil-off of the cryogens or even cause
magnet quenching in extreme cases. Another undesired effect of
the induced currents is acoustic noise due to their interaction with
the B0 field [8]. Although the many deleterious effects of eddy
currents have been greatly reduced by using active and passive
shielding coils [9–12], current pulse pre-emphasis [3], trials of less
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conducting magnet bore material and cryostat configurations [6,7],
residual and complex eddy currents remains a problem in MRI.
Hence, an accurate numerical evaluation of these residual currents
is of continued importance in MRI.

The large-scale calculation of eddy currents in conductors of
complex geometry is computationally challenging, particularly, if
the source of the field excitation has a 3D current distribution.
For transient analysis, the problem becomes even more challeng-
ing to solve. A variety of differential and integral methods have
been proposed to simulate the phenomena of eddy current induc-
tion in MRI. The finite element method (FEM) and finite difference
time-domain (FDTD) schemes permit the simulation of realistic
cryostat vessels and 3D gradient coils (x- and z-gradient coil) with
large computational burden and some difficulties in the manage-
ment of far field boundary conditions [7,13–15]. Field solutions
are approximated at the origin in some differential schemes devel-
oped in cylindrical coordinates [15].

Integral methods, such as the boundary element method (BEM)
[16], only require the discretization of the active parts, neglecting
the surrounding air and introducing a correct far boundary condi-
tion. The BEM has some difficulty in simulating the thickness of the
cryostat and its conducting properties. The equivalent magnetic
coupling circuit (EMCC) or network method has been applied with
some success in the analysis of currents induced by axis-symmet-
ric coils (e.g. z-gradients) in a realistic cryostat [6,8,12]. To the
knowledge of the authors, BEM analysis of an x-gradient coil or
any other coil of arbitrary geometry has not been reported. The
network method as an integral method [16,17], introduces a cor-
rect far boundary condition and allows a accurate simulation of
the conducting domain.

This paper presents a network method coupled in Fourier
space to accurately and efficiently evaluate the current induced
by coils of arbitrary geometry in cylindrical coordinates. The
new scheme combines the advantages of the differential and inte-
gral methods of including the physical properties of the model
(cryostat thickness, length and conductivity) and a correct man-
agement of boundary conditions (magnetic field is accurately
determined in the ROI without approximation). The three main
assumptions of this new approach are: (a) an induced surface
current density distribution is considered uniform across con-
ducting cylindrical shells of thickness h; where h is much smaller
than the skin depth for the given frequency, (b) the thickness h is
much smaller that the cylinder axial length and radius, (c) no
resistive coupling exists between shells but they are inductively
coupled. Considering (a)–(c), we applied the infinitesimal thin
shell approach where a surface current density, expressed as a fi-
nite Fourier series, flows in each cylindrical surface of radius q,
conductivity rh and axial length L. Resistive losses and magnetic
energy are rapidly calculated using Bessel functions [18], thereby
avoiding costly full 3D computation of theses parameters in
Cartesian coordinates. The accuracy and versatility of the method
is demonstrated by modeling the induced current of an actively-
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Fig. 1. Schematic representation of the model. (A) Half cross-section of the metallic cyli
source, Js(r, t). The thickness h is much smaller than the skin depth, d. (B) A surface curren
vector en points outward the surface of mean radius qn.
shielded whole body x-gradient coil in a multi-layered cylindrical
cryostat vessel. Details of the spatiotemporal current diffusion
process within each layer and the magnetic field produced by
each cylinder are presented and discussed.

2. Materials and methods

In this section the basic field equations and the assumptions un-
der which the model is valid are presented. The diffusion equation,
power dissipation, magnetic energy and the current density
expression are described and presented for consistency of notation
and completeness.

2.1. Basic equations and model assumptions

A non-magnetic metallic cylinder (region Vi) is immersed in an
external magnetic field created by the known source Js (r, t) excited
at t = 0 (see Fig. 1). We assumed a linear isotropic conducting med-
ia of conductivity r. The system is linear and the total contribution
of magnetic field intensity can be represented by Hi(r, t) + H(r, t)s;
where Hs(r, t) is the magnetic field intensity produced by the
known current source Js(r, t) immersed in the medium of r = 0
and l0 = 4p 10�7 H/m. Hi(r, t) is the magnetic field generated by
the induced currents in Vi. We assumed that currents and fields
may change in both space and time.

It is assumed that no net electric charges exist and the displace-
ment current caused by the change of polarization in the medium
is much smaller than the conducting current Ji(r, t) = r E(r, t), where
Eis the electric field produced by Ji(r, t). The electromagnetic field
equations in the presence of the conducting cylinder Vi are giving by:

r� ðHiðr; tÞ þHsÞ ¼
Jiðr; tÞ r 2 Vi

Jsðr; tÞ r 2 R3jr R Vi

�
ð1Þ

r � ðHiðr; tÞ þHsðr; tÞÞ ¼ 0 r 2 R3jr R Vi ð2Þ

We assumed that the source Js(r, t) is known and excited at t = 0, Ji

and Hi are considered zero at t = 0 [19].
The conducting cylinder Vi is divided in N layers of thickness h,

where h is much smaller than the skin depth for the given fre-
quency. The shell axial length L and radius qn are much larger than
the thickness h. The conducting layers Cn are smooth and treated as
thin shells of surface conductivity rh. We assumed that no current
flows in the radial direction (Jq � 0), hence no resistive coupling
exists between the shells, but that they are inductively coupled.
In regards of the aforementioned conditions the current induced
in the shell is treated as a surface current density and it is consid-
ered uniform across the sufficiently small thickness h. The induced
current density has two components ðJs

i ðr; tÞ ¼ J/ðr; tÞe/ þ Jzðr; tÞezÞ
and it is related to Ji(r, t) by Ji

s(r, t) = hJi(r, t). J/(r, t) and Jz(r, t) are the
azimuthal and axial components of the induced current in Cn,
respectively. Under this assumptions Ji

s(r, t) can be expressed as
Z 

en
Ji
s

h 
ρn

Cn

b

nder of conductivity r immersed in a magnetic field created by the known exciting
t density Ji

s(r, t) flows in each thin conducting surface Cn of axial length L. The normal



Fig. 2. Half cross-section of the conducting cylinder excited by a concentric circular
current loop place at z = 0.

Fig. 4. A representation of the designed x-gradient coil. The arrows indicate the
current direction.
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the rotor of the electric vector potential, T, of which, only one com-
ponent exists which points normal to Cn. Then Ji

s is expressed as
[20]:

Js
i ¼ r� wðz;/; tÞen ð3Þ

where w(z,/, t) is the stream function. In virtue of the source-free
condition r � Js

i ðr; tÞ ¼ 0, both components of the vector Ji
s(r, t) can

be related such as r � Js
i ðr; tÞ ¼ 0 holds.

It is assumed that the exciting source is represented by an infi-
nitely thin wire filament of current density

Jsðr; tÞ ¼
XH

j¼1

sðtÞ ljðrÞ
jljðrÞj

ð4Þ

where lj = (lxex + lyey + lzez) is the vector that joins two consecutive
points of the discrete coil. We assumed that the points are sorted
in such a way that vector l is directed to the current direction. H
is the number of segments and

ssðtÞ ¼ I0IðtÞ ð5Þ

is the time variation of the driving current applied to the exciting
coil. I0 is the current amplitude.

2.2. Current density

The induced current density components may contain all
possible spatial variation along the /- and z-directions in order
to support exciting coils of an arbitrary geometry. Some of the ap-
proaches presented are suitable for coils of a specific geometry or
for infinitely long cylinders [21,22]. In this paper we propose to
express the azimuthal component of Ji

s(r,t) as normalized Fourier
Fig. 3. (a) Eddy current penetration in a thick conducting cylinder versus radial distan
variation. (b) The new approach presented in this paper is compared with a single expone
the accuracy of the method.
series expressed as function of the coordinates (/- and z-) and
the variable time t; thus:

J/ðz;/;q; tÞ

¼
XN

n¼1

dðq�qnÞ �
XQ�1

q¼0
bnqðtÞcosðKqzÞþ

XQ

q¼1
anqðtÞsinðKqzÞ

h i
k0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a2
64

þ
XQ

q¼1
hnqðtÞcosðKqzÞþ

XQ

q¼1
nnqðtÞsinðKqzÞ

h iXM

m¼1
kmeim/

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{b
3
775
ð6Þ
ce at z = 0. The cylinder is excited by a loop driven with a time-harmonic current
ntial fitting y(q) = 4180e�362.2(q � Ro). The solution obtained with this work indicates
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where the functions cos and sin represents the basis function and
bnq(t), anq(t), hnq(t) and nnq(t) are the unknown amplitude of the cur-
rent modes expressed as a function of time. Q is the number of basis
functions, k0 and km are weighting factors; and Kq ¼ 2pq

L . Ji
s(r,t) = 0

for jzj > L/2. The proposed current density component includes the
cylinder length [23].

The term a in Eq. (6) includes all even and odd dependence of Ji
s

along z-direction (m = 0); including the constant term bn0(t) useful
to quantify the B0 shift due to the eddy currents [24]. If only coils
with Jz(r,t) = 0 are used as exciting coils, then the term b might be
excluded. However, when analyzing coils with Jz(r,t) dependence
(m – 0), then the terms a and b with m = 1,2, . . .,M must be in-
cluded. When evaluating the induced current by an x-gradient coil,
then only m = 1 terms are included. It is required to incorporate
high order terms (M > 1) when complicated 3D coil current pat-
terns are used as exciting coils.
Fig. 5. Stream function of the currents induced by a shielded x-gradient coil as function
When evaluating Eq. (6) the weighting factors k0 and km are
equal to one; the uses of these parameters are explained in the
next section.
2.3. Diffusion equation, power and magnetic energy

The diffusion equation is deduced using the law of conservation
of energy and can be written as [19,25]:

Mis
@JsðtÞ
@t

� �
þMii

@Js
i ðtÞ
@t

� �
þ Rii Js

i ðtÞ
� �

¼ 0: ð7Þ

This equation relates the induced current with the exciting current
source. Mis is the mutual inductive coupling between the source and
the conducting shells, Mii and Rii are the self inductive and resistive
coupling of the conducting shells, respectively.
of z and time. Layers 1(a), 2(b), 3(c) and 4(d) belonging to the warm bore cylinder.
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One of the advantages of using Fourier Bessel expression is that
the self resistance and inductance depends on the Fourier trans-
form of the azimuthal current density and only a single integral
over k is required. Appendix A and B details the power dissipated
and the magnetic energy expressions deduced from Eqs. (33 and
34) (page 912) [18]. The Fourier transform of Eq. (6) results in
[26,27]:

jm
/ ðq;kÞ ¼

XN

n¼1

dðq�qnÞ
k0

XQ�1

q¼0
bnqðtÞgþq ðk;LÞþ i

XQ

q¼1
anqðtÞg�q ðk;LÞ

� 	zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a

km

XQ

q¼1
hnqðtÞgþq ðk;LÞþ i

XQ

q¼1
nnqðtÞg�q ðk;LÞ

� 	zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{b

8>>><
>>>:

9>>>=
>>>;:
ð8Þ

From references [26,27] we deduced that:
Fig. 6. Stream function of the currents induced by a shielded x-gradient coil as funct
g�q ðk; LÞ ¼
L
2

sinc
kL
2
þ qp

� �
� sinc

kL
2
� qp

� �� �
: ð9Þ

The superscript ± in Eq. (6) is used to identify the spatial depen-
dence of the basis; for cos (symmetry in z-axis) function we used
(+) and for sin (anti-symmetry) we used (�).

The mutual coupling (Mis) between an arbitrary exciting coil de-
scribed by Js(t) and the conducting shells Cn is calculated in the real
space. The currents induced by asymmetric [28], locals [29], uni-
planar [30] and 3D [31] gradient coils excited by arbitrary current
pulse can be evaluated. The mutual coupling formula for coils with
symmetric current density along z-axis and zero axial component
is written as:

M0þ

is ¼
l0

4p
XN

n¼1

XQ�1

q¼0

bnqðtÞM0þ

nq ð10Þ
ion of z and time. Layers 1(a), 2(b), 3(c) and 4(d) belonging to the 80 K cylinder.
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where
M0þ

nq ¼
Z L=2

�L=2

Z 2p

0

PH
j¼1 �lxj

sinð/0Þ þ lyj
cosð/0Þ

� 	
qn cosðKnqz0Þd/0dz0

tjn
:

ð11Þ
Eq. (10) is deduced by substituting Eqs. (4) and (6) in the stored
magnetic energy formula (page 147. Eq. (3.63)) [32].

tjn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxj
� qn cosð/0ÞÞ2 þ ðryj

� qn sinð/0ÞÞ2 þ ðryj
� z0Þ2

q
is the

distance between the discrete coil segments at the position
(rxj,ryj,rzj) and the differential element of area qnd /

0
dz

0
. For cases

where J/(r,t) is anti-symmetric along the z-axis and Jz(r,t) = 0, we
have:
M0�

is ¼
l0

4p
XN

n¼1

XQ

q¼1

anqðtÞM0�

nq ð12Þ

M0�

nq ¼
Z L=2

�L=2

Z 2p

0

PH
j¼1 �lxj

sinð/0Þ þ lyj cosð/0Þ
� 	

qn sinðKnqz0Þd/0dz0

tjn
:

ð13Þ
For cases m – 0 and symmetric variations of J/ (r,t) along z- and
/-directions the mutual coupling results:

Mmþ

is ¼
l0

4p
XN

n¼1

XQ

q¼1

hnqðtÞMmþ

nq ð14Þ
where

Mmþ

nq ¼
Z L=2

�L=2

Z 2p

0

XH

j¼1

qn

tjn

�lxj
sinð/0Þ þ lyj

cosð/0Þ
� 	
� cosðKnqz0Þ cosðm/0Þ

þlzj
Jmþ

z ðz0;/
0;qnÞ sinðm/0Þ

8>>>><
>>>>:

9>>>>=
>>>>;

d/0dz0;

ð15Þ

and for anti-symmetric variations J/(r,t) along the z-axis the mutual
coupling is written as:

Mm�

is ¼
l0

4p
XN

n¼1

XQ

q¼1

nnqðtÞMm�

nq ð16Þ

where

Mm�

nq ¼
Z L=2

�L=2

Z 2p

0

XH

j¼1

qn

tjn

�lxj
sinð/0Þ þ lyj

cosð/0Þ
� 	
� sinðKnqz0Þ cosðm/0Þ

þlzj
Jm�

z ðz0;/
0;qnÞ sinðm/0Þ

8>>>><
>>>>:

9>>>>=
>>>>;

d/0dz0:

ð17Þ

Similar expressions to Eqs. (15) and (17) can be simply deduced for
anti-symmetric variations along /. Expression for the axial compo-
nent of induced current density Jm�

z can be found from the condition
r � Js

i ¼ 0.
Substituting Eqs. (A.2), (A.3), (A.5), (A.6), (B.2), (B.3), (B.5) and

(B.6) and Eqs. (11), (13), (15) and (17) in Eq. (7), the diffusion equa-
tion results:
L0þ

nq;n0q0 0 0 0 0 0 0

0 L0�

nq;n0q0 0 0 0 0 0

0 0 Lmþ

nq;n0q0 0 0 0 0

0 0 0 Lm�

nq;n0q0 0 0 0
0 0 0 0 . . . 0 0
0 0 0 0 0 LMþ

nq;n0q0 0

0 0 0 0 0 0 LM�

nq;n0q0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Mii

dsi

dt

þ�� �

P0þ

nq;n0q0 0 0 0 0 0 0

0 P0�

nq;n0q0 0 0 0 0 0

0 0 Pmþ

nq;n0q0 0 0 0 0

0 0 0 Pm�

nq;n0q0 0 0 0
0 0 0 0 . . . 0 0
0 0 0 0 0 PMþ

nq;n0q0 0

0 0 0 0 0 0 PM�

nq;n0q0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Rii

si

¼�

M0þ

nq

M0�

nq

Mmþ

nq

Mm�

nq

. . .

MMþ

nq

MM�

nq

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

zfflfflfflfflfflffl}|fflfflfflfflfflffl{Mis

dssðtÞ
dt

ð18Þ

where siðtÞ ¼ ðb0
nqðtÞ;a0

nqðtÞ; h
m
nqðtÞ; n

m
nqðtÞ; . . . ; hM

nqðtÞ; n
M
nqðtÞÞ is the vec-

tor that contains the unknown amplitudes of the Fourier modes
representing the induced current.
2.4. The time-harmonic and transient solution

For the time-harmonic analysis, I(t)=eixt in Eq. (5) and the solu-
tion of Eq. (18) can be expressed as:

siðxÞ ¼ �ixðixMii þ RiiÞ�1Mis ð19Þ

for a given frequency x.
Continuous function might be assigned to I(t) when transient

solutions are required. Specifically, we combined a set of mem-
bership fuzzy functions [33] to create sequences of current
pulses.

Eq. (18) can be solved and expressed as function of the natural
eigenmodes and eigenvalues of the conducting cylinder Vi [19,34].
We used the Crank Nicholson time stepping procedure to solve
Eq. (18); however the (Galerkin and Euler) methods can be simply
implemented by changing a constant value in the formulation
[35].

In MRI we are usually interested in the axial component of the
magnetic field (Bz). The field contribution in the ROI produced by Ji

s

in each shell can be determined using the Biot–Savart law in real
space, once the vector si is calculated. Other magnitudes such as in-
duced force and torque are calculated using the full description of
the induced current density Ji

s.
The new eddy current calculation method was implemented in

Matlab [33] using a XEON 2.5 GHz/32GB RAM computer server
platform.
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2.5. Validation of the computational method

The method was validated against commercial software FEM-
LAB using a canonical problem. The problem consisted in predict-
ing the skin depth of a current induced by a single loop in a
finite length thick conducting cylinder. We considered a single fil-
amentary circular current loop placed at the center of a conducting
cylinder of axial length 38.6 cm, thickness 2.5 cm and internal ra-
dius R0 = 17.5 cm. The cylinder conductivity at room temperature
was set to r = 32.26 � 106 S/m and we assumed that the current
loop is driven by a harmonically varying current I(t) = eixt with
an amplitude I0 = 2 A, x = 2p � f and f = 1 kHz. The loop of radius
12.55 cm was placed concentrically with respect to the cylinder
axial axis and at z = 0. Fig. 2 shows a 2D representation of the de-
scribed example.

The cylinder was divided in to 35 layers and the time-harmonic
solution Eq. (19) was applied. This model only required the
calculation of the matrices L0�

nq;n0q0 (Eqs. (A.5) and (A.6)), P0�
nq;n0q0
Fig. 7. Stream function of the currents induced by a shielded x-gradient coil as func
(Eqs. (A.2) and (A.3) and the vectors M0�
nq to obtain the amplitude

siðxÞ ¼ ðb0
nqðxÞ and a0

nqðxÞÞ of the induced current Ji
s.

An equivalent model was setup in FEMLAB. A coil of finite circu-
lar cross-section was placed in the same position of the current
loop model. The radius of the circular cross-section was set to
1 mm to simulate a filamentary loop. This value produces a current
density of 636.62 � 103 A/m2. The model domain was discretized
using 19401 triangular elements to obtain 35 layers along the
radial directions.

3. Results

3.1. Validation

Fig. 3 shows the results produced by the presented method
(This work) and the result obtained using FEMLAB.

FEMLAB takes advantage of the problem symmetry and the
solution was obtained in 35 s. The solution produced with the
tion of z and time. Layers 1(a), 4(b), 6(c) and 9(d) belonging to the 4 K cylinder.
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new approach required 6 min to be completed. The root means
square error of the curve fitting presented in Fig. 3b was 0.0997
and the r-square was 1. The skin depth penetration predicted by
this work was 2.76 mm which is close to the 2.8 mm value pre-
dicted by the formula d ¼

ffiffiffiffiffiffiffiffiffi
2

rl0x

q
.

3.2. Current induced by an actively-shielded whole body x-gradient
coil

The main goal of presenting this example was to demonstrate
the versatility of the method to deal with coil geometry that pro-
duces a 3D magnetic field such as x-gradient coils. Results detailing
the current diffusion process through the thickness of the cylin-
ders, as well as the magnetic field produced by each layer are
presented.
Fig. 8. Secondary magnetic field generated by the warm bore: (a) 80 K cylinder (b) (46.5
along the x-axis. The total magnetic field includes the contribution of the fields produce
The cryostat model consisted of three cylinders of axial length
1.4 m, 1.37 m and 1.35 m and thickness 5 mm, 3 mm and 6 mm,
respectively. In cylinder 1 (warm shield) the radius was set to
45 cm, cylinder 2 (80 K radiation shield) the radius was 46.5 cm
and cylinder 3 (4 K radiation shield) the radius was set to 47.8 cm.

The conductivity of each cylinder was set to 1.05 � 106 S/m
(room temperature), 100 � 106 S/m (80 K) and 500 � 106 S/m (4 K)
[36]. Fig. 4 shows an x-gradient coil designed using the equivalent
magnetization current method [29].

The magnetic field produced in the surface of the second cylin-
der (80 K shield) was constrained to values smaller than 10 lT. The
self inductance of this 18 turns per quarter coil was 196 lH and the
efficiency g was 47.4 mT/m A. The gradient strength at the ROI was
21.3 mT/m. Assuming I0 = 450 A, I(t) was a sequence of three trap-
ezoidal pulses with ramp up and ramp down times of 100 ls and
cm) and (c) 4 K cylinder (47.8 cm). (d) Transient analysis of the total magnetic field
d by the warm cylinder, 80 K and 4 K radiation shields, respectively.
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flat-top of 300 ls. The time step was set to Dt = 10.05 ls to avoid
possible oscillations of the Crank Nicholson method [35]. The
warm and 80 K cylinders were divided in 4 layers each. The 4 K
cylinder was divided in 9 layers to assure that the thickness, h, is
smaller than the skin depth d. The number of modes Q was set to
10 and M was set to 1. Fig. 5 shows the temporal behavior of the
stream function along the axial direction in layers 1(a), 2(b), 3(c)
and 4(d) belonging to the warm bore cylinder.

Fig. 6 shows the simulated eddy currents induced in the 80 K
cylinder as function of time and z-position. Approximately 8000
wire segments were used to simulate the discrete x-gradient coil
showed in Fig. 4.

Fig. 7 describes the transient analysis of four of the nine layers
on which the 4 K cylinder was divided. Fig. 8 shows the transient of
the secondary magnetic field contribution of all cylinders along the
x-axis.

In virtue of the inclusion of the term a in Eq. (6), it was possible
to evaluate the secondary magnetic field contribution produced by
currents with m = 0 dependence. The first term a in Eq. (6) repre-
sents even variations of the current density along the z-axis includ-
ing a constant value. This induced constant value bn0(t) produced
an undesired offset in the resonant frequency of the tissue, leading
to miss-registration of the spatial position of the sample [24]. Fig. 9
presents the B0-shift induced by the x-gradient coil in the model
cryostat.

The required computing time to complete the simulation was
25 min. FEM codes would require a huge computational burden
[37] to simulate coils with 3D magnetic field such the coil evalu-
ated in this work.

4. Discussion

4.1. Validation of the computational method

Fig. 3 demonstrates the accuracy of the new method when pre-
dicting the skin depth of the currents induced by a circular loop
with a time-harmonic current variation. The predicted skin depth
2.76 mm is close to the target 2.8 mm yielded by the formula
d ¼

ffiffiffiffiffiffiffiffiffi
2

rl0x

q
. An extremely small deviation of the simulated current

with respect to the exponential fit for the outer shells was
observed. We presume that this effect is due to the weak mutual
Fig. 9. Transient secondary magnetic field B0-shift produced by the eddy currents
induced in the cryostats.
coupling between the source and the outer layers. The current
tends to slightly increase its value as a compensating mechanism
of the far-inductive coupling. A similar effect was observed in the
results obtained from FEMLAB simulations and in Ref. [12].

The computing time required to complete the eddy current sim-
ulation strongly depends on the number of segments used to sim-
ulate the discrete coil. The Bessel functions are efficiently
calculated in Matlab so that, for a typical model such as the ones
presented in this paper (3 thick cylinders, 17 layers and Q = 10)
the self inductive and resistance matrices are calculated in 8 min.
However, the time required to calculate the mutual coupling Eq.
(11), (13), (15) and (17) was approximately 16 min. This comput-
ing time can be reduced by using less numbers of wire segments
H, at the expenses of accuracy.
4.2. Current Induced by an actively shielded body x-gradient coil

The thin shell approach allows us to express the induced cur-
rent using the stream function w and hence the physical and
mechanical magnitude that depends on Ji

s can be simply evaluated.
Fig. 5 shows the stream function of the current induced in the lay-
ers belonging to the warm bore cylinder. Approximately 34 Å is the
maximal peak current induced in the inner layer. w tends to de-
crease to 27 Å as the layer radius increases. In the warm bore cyl-
inder 1, the current is rapidly dissipated as a typical response of
materials with low conductivity. Eddy currents lasted considerably
longer in the 80 K radiation shield cylinder, Fig. 6. This cylinder is
usually in contact with liquid nitrogen and consequently possesses
a higher conductivity. In virtue of the increased conductivity, the
maximal peak stream function of the eddy current in the first layer
was twice as large as that induced in the warm bore. However, the
w maximal value rapidly decays when the cylinder radius in-
creases. Conversely, the current remains almost constant through
the thickness of the warm bore cylinder.

The 80 K radiation shield substantially reduces the peak of w to
6.5 Å in the first layers of the 4 K cylinder. (see Fig. 7a). The induced
current has a very small value in layer 5 and tended to increase its
value up to layer 9. The peak current of layer 9 of the 4 K cylinder is
similar to the value generated in layer 1 of the warm bore cylinder.
However, layer 9 is further from the ROI than layer 1 of the warm
bore. Due to rapid current dissipation in the warm bore cylinder,
the outer layers in the 4 K cylinder and the layers in the 80 K cyl-
inder produces a significant contribution to the magnetic field (see
Fig. 8d). In terms of amplitude, the warm and the 80 K cylinders
(Fig. 8a and b) produce approximately the same peak magnetic
field in the ROI. However, as mentioned before, the contribution
from the warm cylinder dissipates quickly.

Fig. 9 presents the transient magnetic field contribution in the
ROI along the z axis. Conversely to Fig. 8d, the B0-shift effect is
quickly dissipated in time even in the 80 K and 4 K radiation shield.
5. Conclusions

A new method to simulate the current induced by coils of
arbitrary geometry in thick cylinders of finite length has been
presented. The method combines the advantage of integral and dif-
ferential schemes by correctly introducing far boundary conditions
and physical properties to the model. The current induced in multi-
ple thin layers was modeled as a truncated Fourier series expan-
sion. The diffusion equation is then solved using the equivalent
circuit network method. We have demonstrated that under the
stated assumptions presented in the paper, the new method is able
to accurately predict the skin depth in thick cylinders excited by
coils of arbitrary geometry. The computational burden is substan-
tially reduced by expressing the power and magnetic energy



260 H. Sanchez Lopez et al. / Journal of Magnetic Resonance 207 (2010) 251–261
matrices with a Fourier Bessel expansion. The presented formula-
tion of the inductive coupling between the source and the conduct-
ing material permits the evaluation of coil of arbitrary geometry. A
detailed study of the current diffusion process through thick cylin-
ders is possible thanks to the use of the thin shell approach. Mag-
netic and electric fields, force, torque, mechanical vibration and
acoustic noise analysis can be simulated in detail by using the pre-
sented approach. The analysis of the x-gradient coil showed that an
increment of the induced current density was registered in the out-
er layers of the 4 K cylinder. This effect deserves a further analysis
in terms of vibration and heating.
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Appendix A. Case m = 0

From (Eqs. (33 and 34) page 912) [18] and Eq. (8) we write:

P0 ¼
XN

n¼1

XN

n0¼1

PQ�1

q¼0

PQ�1

q0¼0
b0

nqðtÞb
0
n0q0 ðtÞP

0þ

nq;n0q0

þ
PQ
q¼1

PQ
q0¼1

a0
nqðtÞa0
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nq;n0q0 ¼
1
rh

k0

Z 1

�1
dkqng�q ðk; LÞg�q0 ðk; LÞ ðA:3Þ

for cases where the current density in the exciting coil is symmetric
along z-axis and the axial components is. The magnetic energy is
expressed as:

E0 ¼ 1
2

XN

n¼1

XN

n0¼1

PQ�1

q¼0

PQ�1

q0¼0
b0

nqðtÞb
0
n0q0 ðtÞL
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nq;n0q0

þ
PQ
q¼1

PQ
q0¼1

a0
nqðtÞa0

n0q0 ðtÞL
0�

nq;n0q0

8>>>><
>>>>:

9>>>>=
>>>>;

ðA:4Þ

where

L0þ
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Z 1

�1
dkqnqn0g

þ
q ðk; LÞgþq0 ðk; LÞI

0
0 jkjq<

n
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K 00 jkjq>

n0
� �

: ðA:5Þ

and

L0�

nq;n0q0 ¼ �l0

Z 1

�1
dkqnqn0g

�
q ðk; LÞg�q0 ðk; LÞI

0
0 jkjq<

n

� �
K 00 jkjq>

n0
� �

: ðA:6Þ

Eqs. (A.5) and (A.6) contain only the coupling between layers of
small radius with layers of larger radius. The second half of the ma-
trix is populated by symmetry in virtue that L0�

nq;n0q0 and P0�
nq;n0q0 are po-

sitive-definite and symmetric. The weighting factor k0 = 1.
Appendix B. Case m 6¼ 0

For cases when m – 0, the power matrix is written as:

Pm ¼
XN

n¼1

XN

n0¼1

PQ
q¼1

PQ
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The energy matrix is expressed as:
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For this case (m – 0) the parameter km = (2 � dm,0). Equations (B.5)
and (B.6)) include only the interaction between layers of smaller ra-
dius with layers of larger radius. The second half of the matrix is
populated by symmetry. The power matrices Eqs. (A.2), (A.3),
(B.2) and (B.3) only include the coupling among Fourier modes
belonging to the shell of radius q; there is no mutual resistive cou-
pling between shells.
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